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A general approach to the solution of the problem on convective mass transfer in the process of separation
of binary gas mixtures in the channels of membrane units is proposed. An integral equation for the main
separation parameter — the rate of flow of a binary-mixture component through a membrane — has been ob-
tained.

Membrane separation of gases is finding increasing use in the processing of gases, enrichment of air with
oxygen, concentration of hydrogen from the scavenging gases used in ammonia synthesis, etc. [1]. Among the ad-
vantages of membrane separation of gases are the high efficiency of the process, the absence of reagents, the sim-
plicity of the equipment used, the long working life of membranes, and the possibility of automatization of the
work of apparatus [1, 2]. The characteristics of this process can be further improved by optimization of the design
of the flow-through membrane filter. To do this, it is necessary to know the main mechanisms of convective sepa-
ration of gases.

The calculation of a membrane separation module involves the solution of the complex-conjugate problem on
the mass transfer through the membrane and the heat exchange in the head and drainage channels under the conditions
where the separation process is optimized due to a large number of interdependent variables. In this case, the external
diffusion resistance in the head and drainage channels is usually ignored and the gas composition is assumed to be
equal everywhere over their cross sections because of the high diffusivity of gases at comparatively low pressures and
the low penetrability and selectivity of the membrane [1, 3, 4]. In the solution of the above problem, prominence is
given to calculation of the mass transfer through the membrane since this stage is considered as limiting [1, 5]. How-
ever, the development of high-selectivity, asymmetric, polymeric membranes, which can be used at high pressures in
the head channel, has changed the situation. In apparatus with such membranes, the external diffusion resistance is
comparable with the resistance to the internal mass transfer in the membrane. Therefore, it makes sense to calculate
separately and analyze the operation of apparatus in which the external diffusion resistance or the resistance inside the
membrane prevails.

Apparatus with plane, hollow-fiber, and roll membrane modules are used for separation of gas mixtures. How-
ever, the effect of the external diffusion resistance on the separation of gases in plane and hollow-fiber membrane
units is not clearly understood at present and there are practically no works devoted to detailed mathematical investi-
gation of this problem.

We will consider a binary gas mixture flow that is completely developed at the input to a plane slot or a hol-
low fiber and is symmetric relative to the axis of the channel (see the diagram in Fig. 1). It is assumed that the flow
is steady, the gas is noncompressible, the process is isothermal, and the viscosity and diffusion coefficients are con-
stant. The volume viscosity and the pressure diffusion will be ignored. Then the continuity equation, the equation of
motion (in projections), and the equation of convective diffusion can be written in dimensionless form as
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v (x, 1) = V (x) = 
ΛMu0

εδm
 p (x, 1) c (x, 1) (8)

on the membrane (at r = 1). Here, α = 0 corresponds to a plane-frame module and α = 1 corresponds to a hollow-
fiber module.

As follows from the formulation of the problem, the continuity equation, the equation of motion, and the
equation of convective diffusion are interconnected since the unknown rate of mass transfer through the membrane
V(x) depends on the concentration and pressure of the gas at the wall. The problem will be solved on the assumption
that V(x) is known. In this case, the equation of motion and the equation of convective diffusion can be solved inde-
pendently.

The equation of motion will be solved at the following parameters of the membrane channel: L = 1 m, R =
10−3–10−4 m, u0 = 1 m/sec, V

__
 = 10−5 m/sec, ν D 10−5 m2/sec, and D = 1.7⋅10−5 m2/sec.

Fig. 1. Diagram of membrane separation of a gas mixture.
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Since the mean rate of flow u0 through the cross section of the channel is much higher than the rate of mass
transfer V

__
, the convective terms in the equations of motion (2) and (3) can be ignored. In this case, with an accuracy

to terms of the order of ε2, we obtain
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It follows from the equations of motion (10) that the pressure p depends only on x; then the first relation (10)
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Upon integration with respect to r at conditions (12) and (13), we obtain
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Substitution of this formula into the continuity equation (9) gives
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consequently, formula (14) takes the form
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In the final analysis, from Eqs. (16)–(18) and formulas (11) and (19) we find the distribution of the longitu-
dinal velocity and the pressure in the membrane channel:
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Now, we will analyze the equation of convective diffusion (4). Since the first term on the right side of this
equation is small, it can be written in the following form:
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Using the continuity equation (9), we write the equation of convective diffusion in the conservative form
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Since the diffusion Prandtl number is small (0.7–1) for gas mixtures, the diffusion boundary-layer zone occu-
pies a small part of the membrane channel in a laminar regime and so can be ignored.

We propose to solve the equation of convective diffusion (22) at the boundary conditions (6) and (7) by a
semiintegral method. The essence of this method is as follows. We write Eq. (22) in the form
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Let us drop the first term of the equation and integrate the remainder with respect to r at the boundary conditions (6)
and (7). As a result, we obtain
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where cw(x) is the concentration on the surface of the membrane. Substitution of the expression for the velocity v
from (15) into this concentration distribution gives
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The concentration distribution (24) is true for the region near the membrane. To determine such a distribution every-
where over the cross section of the membrane channel, we will derive an integral equation of mass balance. For this
purpose, let us integrate Eq. (23) with respect to r from 0 to 1 at the boundary conditions (6) and (7):
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To determine the dependence cw(w), we substitute relation (24) into formula (25) and, using expression (20), obtain
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The membrane separation of gases is character ized by small values of PeDεV(x). Therefore, we may expand the expo-
nent into a series and consider only the two first terms of the expression. As a result, we find
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Substituting (21) and (26) into (8), we obtain an equation for V(x):
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The integral equation obtained allows one to calculate the most important characteristic of the membrane separation of
binary gas mixtures — the rate of mass transfer through the membrane.
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NOTATION

c, concentration of the penetrating component; D, diffusion coefficient, m2/sec; L, length of the channel, m;
M, molar mass of the penetrating component, kg/mole; p, pressure, Pa; p = p

_
/(ρ

__
u0

2), dimensionless pressure; PeD =
u0R/D, diffusion Peclet number; R, radius (halfwidth) of the channel, m; r

_
, radial coordinate, m; r = r

_
/R, dimensionless

radial coordinate; ReD = u0R ⁄ ν, Reynolds number; u
_
, longitudinal projection of the velocity, m/sec; u = u

_
 ⁄ u0, dimen-

sionless longitudinal projection of the velocity; u0, mean flow rate at the input of the channel, m/sec; v
_
, radial projec-

tion of the velocity, m/sec; v = v
_
L/(u0R), dimensionless radial projection of the velocity; V

__
, rate of mass transfer

through the membrane, m/sec; V = V
__

L/(u0R), dimensionless rate of mass transfer through the membrane; x
_
, longitudinal

coordinate, m; x = x
_
/L, dimensionless longitudinal coordinate; δm, effective thickness of the membrane, m; ε = R/L,

ratio between two characteristic sizes of the channel; Λ, penetrability of the membrane, mole⋅m/(N⋅sec); ν, kinematic
viscosity, m2/sec; ρ, density, kg/m3. Subscripts: 0, value at the input of the channel; m, membrane; w, value at the
wall of the channel; ′, ′′ , derivative functions.
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